C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Fluid Mechanics Subject Code: 4TE04FME1 Semester: 4 Date: 18/04/2019

Branch: B.Tech (Mechanical) Time: 02:30 To 05:30

Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the fol	llowing questions:			(14)	
	a)	What is the corre	ct formula for absolute p	pressure?		01	
		A) $P_{abs} = P_{atm} -$	B) $P_{abs} = P_{vacuum} -$	C) $P_{abs} = P_{vacuum} +$	D) $P_{abs} = P_{atm} + P_{gauge}$		
		Pgauge	P _{atm}	P _{atm}			
	b)	Unit of viscosity	in CGS system is			01	
	-	A) pascal	B) Poise	C) Stoke	D) bar		
	c)	According to Arc the buoyancy for	himede's principle, if a b ce is the weight	body is immersed partially to fluid displaced by the	y or fully in a fluid then body	01	
		A) equal to	B) less than	C) more than	D)unpredictable		
	d)	Viscous forces ar	e not present in			01	
		A) rotational	B) irrotational flow	C) laminar flow	D) none of the above		
		flow					
	e)	Continuity equati	on is			01	
		A) Q=AV	B) $Q=AV^2$	C) $Q = A^2 V^2$	D) None		
	f)	When flow rate is	s constant then the type of	of flow is		01	
		A) Steady flow	B) Uniform flow	C) Compressible flow	D) None		
	g)	Reynold's numbe	er is defined as ratio of			01	
	U/	A) inertia force	B) viscous force to	C) both A and B	D) None of the above		
		to viscous force	inertia force				
	h)	If Reynold's num	ber is less than 2000, the	en the flow is	S	01	
	,	A) Turbulent	B) Laminar	C) transit	D) None of the above		
	i)) The flow in which the velocity is function of time and one space co-ordinate is called as _					
		A) one	B) two dimensional	C)) three	D) None of the above		
		dimensional		dimensional			
	j)	Density =				01	
		A) Mass /	B) Volume/ weight	C) volume / mass	D) None of the above		
		volume					
	k)	In stable equilibri	ium, metacentre is lies _	centre of gravity.		01	
		A) Above	B) Below	C) Equal	D) None of the above		
	D	The device used f	for the measuring the pre	essure at a point in a fluid	by balancing the	01	
			C 1	•			

		column of fluid by another column of fluid is known as						
		A) manometer B) piezometer C) U-tube manometer D) All of the above						
	m)	When centre of buoyancy is lies above the centre of gravity then submerged is						
		A) Neutral B) stable C) unstable D) None of the above						
		equilibrium equilibrium						
	n)	A study of fluid in rest is known as	01					
		A) Fluid statics B) Fluid dynamics C) Fluid kinematics D) None						
Atten	npt any f	cour questions from Q-2 to Q-8						
Q-2		Attempt all questions (
	(a)	Explain capillary rise and capillary fall. Derive expression for capillary rise.						
	(b)	Explain briefly U – tube manometer.						
Q-3		Attempt all questions (
	(a)	With neat sketches, explain the conditions of equilibrium for floating and sub – merged $0'$						
		bodies.						
	(b)	Define the equation of continuity. Obtain the expression for continuity equation for a three dimensional flow						
0-4		Attempt all questions						
τ.	(a)	Differentiate between:						
		1. Laminar flow and turbulent flow						
		2. Compressible flow and incompressible flow.						
~ -	(b)	What is venturimeter? Derive an expression for the discharge through venturimeter.						
Q-5	(\mathbf{z})	Attempt all questions						
	(a)	Define the term Notch and also derive an expression for the discharge over a rectangular Notch						
	(b)	The diameter of a pipe at the sections 1 and 2 are 10 cm and 15 cm respectively						
		Find the discharge through the pipe if the velocity of water flowing through the						
		pipe at section 1 is 5 m/s. Determine also the velocity at section 2.						
Q-6		Attempt all questions						
	(a)	Give the dimensions of : (i) Force (ii) viscosity and (iii) power.						
	(b)	What are the types of dimensional analysis? Describe the Rayleigh's method for						
		dimensional analysis.						
	(c)	Derive Darcy – Weichback equation.						
Q-7		Attempt all questions						
	(a)	What are the methods of measurement of viscosity? Explain Capillary tube method						
	(b)	Define and explain the terms:						
		1. Mach number						
		2. Mach angle.						
Q-8		Attempt all questions						
	(a)	Explain the following:						
		1. Newtonian and Non – Newtonian fluid						
		2. Vapour pressure.						
	(b)	What is Hagen Poiseuille's formula? Derive an expression for it.	07					

